Structure Revision of Polypodoside A. Major Sweet Principle of *Polypodium glycyrrhiza*

Mugio NISHIZAWA,* Hidetoshi YAMADA, Yukiko YAMAGUCHI, Susumi HATAKEYAMA, Ik-Soo LEE,† Jinwoong KIM,† and A. Douglas KINGHORN† *
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-Cho, Tokushima 770
†Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy,
University of Illinois at Chicago, Chicago, IL 60612, USA

The aglycone stereochemistry of an intensely sweet saponin, polypodoside A isolated from the fern *Polypodium glycyrrhiza*, was revised from 22S, 25R, 26S to 22R, 25S, 26R based on a direct chemical correlation with a related sweet saponin, osladin.

The major sweet tasting principle of the North American fern, *Polypodium glycyrrhiza*, was characterized and named polypodoside A. The structure 1 was proposed by spectral study in comparison to a related saponin, osladin (2) which is the sweet principle of *P. vulgare*.2 6 When we synthesized compound 2, the initially reported wrong structure for osladin, we found it was not sweet at all. The revised structure 4 with 22R, 25S, 26R stereochemistry was then definitely established by single crystal X-ray diffraction study.7 Thus, the structure of polypodoside A requires reinvestigation. We wish to present herein the revised structure 3 for polypodoside A on the basis of a direct chemical correlation with an intermediate of the total synthesis of real osladin (4).8

![Chemical structures](image-url)
When 13C NMR chemical shifts of anomic carbons (C 1', 1'', 1'''', and 26) of polyposode A were compared with those of synthetic 2 (the wrong structure of osladin) and natural real osladin 4, polyposode A was found to have close similarity with 4 at the 1'' and 26 positions but not with 2. Thus, the structure 3 rather than 1 is much more likely for polyposode A.

Table 1. 13C NMR chemical shifts (ppm) and coupling constants ($J_{C1-H1\text{H}}$; Hz) of anomic carbons

<table>
<thead>
<tr>
<th>Carbon</th>
<th>2</th>
<th>4</th>
<th>Polyposode A 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>100.3 (157)</td>
<td>99.6 (155)</td>
<td>99.5 (158)</td>
</tr>
<tr>
<td>1''</td>
<td>102.1 (173)</td>
<td>102.1 (173)</td>
<td>102.2 (176)</td>
</tr>
<tr>
<td>1'''</td>
<td>97.3 (169)</td>
<td>101.8 (166)</td>
<td>102.0 (165)</td>
</tr>
<tr>
<td>26</td>
<td>102.6 (154)</td>
<td>107.3 (157)</td>
<td>107.3 (159)</td>
</tr>
</tbody>
</table>

We first examined the catalytic hydrogenation of polyposode A nonacacetate (3a). Although the reduction proceeded with complete stereoselectivity, the single product obtained was not identical with osladin nonacacetate (4a). Structure 5a was assigned for this reduction product based on a spectral study. This compound should reinforce to take the boat form conformation in its B-ring. Birch reduction (Li/NH$_3$) also provided the same product. Interestingly, the deprotected compound 5, showed a moderate sweet taste. Therefore we planned the following partial synthesis of polyposode A aglycone from a key intermediate of the total synthesis of real osladin (4).8

The lactone 6 was methylated by treatment with LDA and then with methyl iodide to give a mixture of C-25 stereoisomers. Catalytic amount of triflic acid efficiently accelerated the solvolysis of the three-membered ring to give 7 in 73% yield from 6. Hemiacetals prepared by DIBAH reduction of 7 were treated with MeONa in methanol leading to 8 in 89% yield as a 76:24 mixture of C-26 stereoisomers. The stereochemistry of C-25 of 8 was controlled to the desired S (equatorial) configuration exclusively.8 Silylation of 8 gave 9 as a sole product which was then converted to ketone 10 by hydroboration followed by oxidation in 50% yield. The enolate derived from ketone 10 with LDA was quenched with TMSCl to give the corresponding vinyl silyl ether, which upon palladium acetate-catalyzed dehydroisilylation in the presence of p-benzoquinone in benzene-acetonitrile, provided α, β-unsaturated ketone 11 in 17% yield. Although the deprotection of 11 was unsuccessful, the same enone 11 was obtained from the aglycone of polyposide A1 by the successive treatment with n-BuLi, Et$_3$N, and TBSOTf in THF in 20% yield. These two enones were identified by means of 1H as well as 13C NMR spectra. Thus the stereochemistry of polyposide A is confirmed to be 22R and 25S. The remaining 26 position of 3 was assigned to be R by 1H NMR (δ 4.45, 1H, d, $J =$ 8 Hz)1 reflecting the trans relationship between the 25 and 26 positions.

During the isolation experiment of osladin (4) from Polyodium vulgare, we found this fern also contains polyposide A (3).7 Although these two saponins showed quite similar behavior during a variety of chromatography, pure osladin was easily obtained by recrystallization. Isolation of polyposide A was not so simple. The mother liquor of the crystallization of osladin was concentrated and then acetylated. The mixture was subjected to HPLC (YMC D-Sil-5 20 x 250 nm column, and hexane/ethyl acetate (3:2) as eluant, flow rate
a) LDA/THF/HMPA then MeI, -78.0 °C. b) TFOH (0.005 equiv)/dioxane-H$_2$O (9:1), reflux, 2 h.
c) DIBAH/THF, -55 °C, 7 h. d) MeONa/MeOH, reflux, 2 h. e) TBSOTf/Et$_3$N/CH$_2$Cl$_2$, 0°C, 10 min.
f) BH$_3$/THF, rt, 2 h then H$_2$O$_2$/NaOH, 45-55 °C, 1 h. g) PDC/CH$_2$Cl$_2$, rt, 12 h. h) LDA/THF then TMSCI, -78 °C. i) Pd(OAc)$_2$/p-benzoquinone/PhH/CH$_2$CN, 50 °C, 10 h.
30 mL/min) to give polyodolide A nonaacetate (3a). Hydrolysis of 3a with MeONa in methanol provided 3 which was identified with the material obtained from P. glycyrrhiza by every spectral feature.

We thank for financial support from Ono Pharmaceutical Co. Ltd.

References
9) Spectral data: 9: \([\alpha]_d^{27} +2.7^\circ (c 1.3, \text{CHCl}_3); \text{FT IR (film)} 2934, 2857, 1462, 1385, 1232, 1171, 1094, 1060, 833, 777 \text{ cm}^{-1}; \text{H NMR (200 MHz in CDCl}_3) 0.05 \text{ (6H, s), 0.09 (3H, s), 0.10 (3H, s), 0.70 (3H, s), 0.87 (3H, d, J = 6.8 Hz), 0.89 (9H, s), 0.90 (9H, s), 0.96 (3H, d, J = 6.8 Hz), 1.00 (3H, s), 3.33 (1H, m), 3.47 (1H, m), 4.23 (1H, d, J = 7.9 Hz), 5.31 (1H, d, J = 5.1 Hz); \text{C NMR (50 MHz in CDCl}_3) -4.9q, -4.6q (\times 2), -3.6q, 11.9q, 13.6q, 16.8q, 18.2s, 18.3s, 19.5q, 21.3t, 23.8t, 24.4t, 25.9q (\times 3), 26.8q (\times 3), 27.7q, 31.3t, 32.0t (\times 2), 32.1d, 36.6s, 37.4t, 38.1d, 39.8t, 40.2d, 42.6s, 42.8t, 50.3d, 52.7d, 56.6d, 72.7d, 78.2d, 102.5d, 121.1d, 141.6s; \text{HRMS(EI) m/z} \text{ calcd for C}_{16}H_{25}O_{10}Si, 644.5076 \text{ (M}), \text{ found 644.5048. 10: [\alpha]_d^{22} +7.8^\circ (c 1.1, \text{CHCl}_3); \text{FT IR (film)} 2953, 2862, 1709, 1462, 1387, 1252, 1173, 1094, 1070, 837, 779 \text{ cm}^{-1}; \text{H NMR (200 MHz in CDCl}_3) 0.03 \text{ (6H, s), 0.08 (3H, s), 0.10 (3H, s), 0.68 (3H, s), 0.74 (3H, s), 0.86 (3H, d, J = 6.8 Hz), 0.87 (9H, s), 0.90 (9H, s), 0.96 (3H, d, J = 6.8 Hz), 2.03 (1H, br d, J = 12.5 Hz), 2.16 (1H, dd, J = 12.8, 2.6 Hz), 2.19 (1H, dd, J = 12.3, 3.7 Hz), 3.33 (1H, m), 5.52 (1H, m), 4.24 (1H, d, J = 7.9 Hz); \text{C NMR (50 MHz in CDCl}_3) -4.9q, -4.6q (\times 2), -3.6q, 11.9q, 13.2q, 13.6q, 16.6q, 18.2q (\times 2), 21.5t, 23.8t, 24.1t, 25.9q (\times 6), 27.6t, 30.3t, 31.2t, 31.4t, 37.0t, 38.0d, 38.1d, 39.6t, 40.2d, 41.0s, 43.2s, 46.8t, 52.7d, 54.1d, 56.6d, 57.0d, 71.5d, 78.1d, 102.4d, 211.1s; \text{MS(EI) m/z} \text{ 659 (M^-1), 603 (M^-C, H}_2, \text{MS(Cl) m/z} \text{ 661 (M^-1), 659 (M^-1), 603 (M^-C, H}_2, \text{MS(Cl) m/z} \text{ OTBS), 11: [\alpha]_d^{22} +11.2^\circ (c 0.7, \text{CHCl}_3); \text{FT IR (film) 2928, 2857, 1667, 1462, 1385, 1252, 1173, 1096, 1065, 837, 777 \text{ cm}^{-1}; \text{H NMR (200 MHz in CDCl}_3) 0.05 \text{ (3H, s), 0.06 (3H, s), 0.09 (3H, s), 0.10 (3H, s), 0.62 (3H, s), 0.88 (3H, d, J = 6.8 Hz), 0.88 (9H, s), 0.90 (9H, s), 0.98 (3H, d, J = 6.8 Hz), 1.24 (3H, s), 3.34 (1H, m), 3.56 (1H, m), 4.24 (1H, d, J = 7.8 Hz), 7.35 (1H, s); \text{C NMR (50 MHz in CDCl}_3) -5.0q, -4.7q, -4.6q, -3.6q, 12.2q, 13.3q, 13.8q, 16.8q (\times 2), 21.8t, 22.7t, 23.8t, 25.9q (\times 6), 27.2t, 29.7t, 30.5t, 31.2t, 37.1t, 38.1d, 38.3s, 38.9t, 40.4d, 44.7s, 50.2d, 52.8d, 53.5d, 55.3d, 71.5d, 77.9d, 102.4d, 123.2d, 163.3s, 200.0s; \text{MS(Cl) m/z} \text{ 659 (M^-1).}

(Received May 30, 1994)